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A sensor array of 32 conducting polymer sensors has been used to detect the rancid defect in virgin
olive oils. A training set, composed of admixtures of a Portuguese virgin olive oil with different
percentages (0-100%) of a rancid standard oil, was used for the selection of the best sensors
classifying correctly the samples. Information on volatile compounds responsible for rancidity and
the sensory evaluation of samples by assessors were used for explaining the mathematical selection
of sensors. A tentative calibration, using unsupervised procedures (PCA and MDS) and a nonlinear
regression, was carried out, with the training set, and later confirmed with a test set with which
rancid commercial samples of different varieties were used to spike a Greek extra virgin olive oil at
low levels of rancidity (0.5-6%).
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INTRODUCTION

Virgin olive oil sensory quality is currently deter-
mined by the European Union regulation (EC, 1991) or
the International Olive Oil Council trade standards
(IOOC, 1996). Both official methods carry out the
sensory evaluation by using panels of trained assessors,
although there are certain technical differences between
them, basically the kind of sensory descriptors and the
scale of evaluation (structured versus nonstructured).
These panel tests have been useful for the construction
of a consensus between experts of different countries
about which attributes would be present or absent in
virgin olive oils of reputable quality. However, panel
tests are a costly and slow procedure that is not always
at the disposal of small producers or cooperative societ-
ies; only large retailers and sellers may be able to afford
such tests. Furthermore, the subjective opinion of as-
sessors undermines the final overall evaluation, and
some flaws have been pointed out (Ranzani, 1994),
mostly when multivariate procedures are not applied
(Aparicio et al, 1992).

On the other hand, volatile compounds are respon-
sible for the flavor perceptions detected by assessors,
and they are not obviously subjective information but
quite objective (Flath et al., 1973). On the basis of this
fact, a recently proposed methodology correlates basic
sensory descriptors (Aparicio et al., 1994; Aparicio and
Morales, 1995) with the volatile compounds responsible
for them (Morales et al., 1995; Aparicio et al., 1996).
The methodology, to which the mathematical procedures
give support (Aparicio and Morales, 1994; Morales et
al., 1994), has allowed the explanation of the most
remarkable virgin olive oil sensory descriptors (green,
bitter-pungent-astringent, sweet, fruity, ripe fruit,
ripe olives, and miscellaneous undesirable attributes).

However, this methodology requires quantification of
the volatile compounds by dynamic headspace high-
resolution gas chromatography (DHS-HRGC), which is
today slow enough to be applied to on-line processes.
The on-line control is a demand more and more heard
from producers who want to store their olive oils in
different deposits, according to olive oil quality, as soon
as the oils have been produced from the automatic
centrifugation systems. The importance is not then in
the detection of those attributes responsible for high-
quality virgin olive oils, for example, green and fruity
(IOOC, 1996), but in the quantification of defects (Peri
and Rastelli, 1994), rancidity being one of the most
remarkable undesirable attributes.

As lipids oxidize, they form hydroperoxides, which are
susceptible to further oxidation or decomposition to
secondary reaction products such as aldehydes, ketones,
acids, and alcohols. In almost all cases, these compounds
adversely affect flavor, aroma, taste, nutritional value,
and overall quality (Vercelloti et al., 1992). Because
there are many catalytic systems that can oxidize lipids,
for example, light, temperature, enzymes, metals, met-
alloproteins, and microorganisms, the control, quanti-
fication, and prediction of oxidation are still important
issues from either scientific or economic points of view.
From a chemical viewpoint, different methodologies
have been suggested to measure and predict the oxida-
tion (Gutiérrez, 1989; ISO 6886, 1989; Cabré and Massó,
1992; Morales and Aparicio, 1997). From a sensory point
of view, a virgin olive oil is oxidized when assessors
detect and quantify the presence of the rancid percep-
tion in the complex matrix of virgin olive oil (EC, 1991;
IOOC, 1996).

A potential alternative, based on semiconductive
organic polymers, has recently appeared for the evalu-
ation of foods and food products (Persaud, 1991; Taylor
et al., 1995; Dube and Peterson-Daly, 1996; Taylor,
1998; Tullett, 1996; Goldring, 1997; Visser and Taylor,
1998), although certain restrictions have been detected
in their applications (Zannoni, 1995; van Ysacker and
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Ellen, 1998). The electronic aroma sensing system
(Hermia and Vignerons, 1994; Grate et al., 1997; Per-
saud and Travers, 1997; Karube et al., 1997), or
electronic nose (Bartlett and Gardner, 1992; Hermia,
1997) as the methodology is commonly called, has
opened a new avenue for screening flavor compounds
(Gardner et al., 1994; Hivert et al., 1995; Shiers and
Farnell, 1995; Rocha et al., 1998). Thus, the concept of
olfactometry, the human evaluation of volatile com-
pounds at the sniffing port of a gas chromatograph, has
abruptly changed with the arrival of sensors (Phillips,
1995). This paper analyzes the possibilities of these
sensors in the detection of the rancid perception, one of
the most remarkable undesirable attributes according
to the International Olive Oil Council (IOOC, 1996), in
high-quality virgin olive oil. This study goes beyond the
results recently published about the application of
sensors in the prediction of the shelf life of edible oils
(Shiers and Aldechy, 1998). Thus, the relationships
between the information given by sensors and the
volatile composition of samples, sniffing, and their
sensory evaluation have been studied. A calibration is
carried out with the most noteworthy sensors.

MATERIALS AND METHODS

Materials. A rancid standard virgin olive oil of the Inter-
national Olive Oil Council was used. This standard is currently
used to train the assessors to identify and evaluate the rancid
defect. The standard was added to a Portuguese virgin olive
oil (Olea europea L.) at different percentages: 0, 1, 5, 12, 20,
40, 60, and 100%. The results were verified with a test set of
12 samples. These samples were made by adding different
percentages (1, 5, 10, and 20%) of three virgin olive oils
(varieties Frantoio, Italy, harvest 1992; Hojiblanca, Spain,
harvest 1989; and Picual, Spain, harvest 1995) with clear
rancid perception, according to assessors, to an extra virgin
olive oil cv. Koroneiki (Crete, Greece, harvest 1997). The
objective of the test set was not only to verify the results of
the training set but also to check the detection of low levels of
rancid perception in virgin olive oil, in comparison with the
official sensory methodologies (EC, 1991; IOOC, 1996).

DHS-HRGC. Volatile compounds were analyzed with a
dynamic headspace technique under determined optimized
conditions as previously described (Aparicio and Morales, 1994;
Morales et al., 1994). Samples of 0.5 g were heated at 40 °C
and swept with N2 (200 mL/min) for 15 min. A trap of Tenax
TA (Chrompack) absorbed the volatiles at room temperature.
A Chrompack thermal desorption cold trap injector (TCT) was
used to desorb the trapped volatile compounds by heating at
220 °C for 5 min. The volatiles were then condensed onto a
fused silica trap cooled at -110 °C with liquid nitrogen for 5
min just before injection, which was made by flash heating of
the cold trap at 170 °C, at which it was held for 5 min. The
volatiles were transferred onto a fused silica DB-Wax capillary
column (60 m × 0.25 mm i.d., 0.25 µm film thickness) (J&W
Scientific, Folsom, CA). The oven temperature was held at 40
°C for 6 min and programmed to rise at 2 °C/min to a final
temperature of 200 °C, at which it was held for 10 min. A
Hewlett-Packard 5890 series II gas chromatograph (Palo Alto,
CA) with an FID detector was employed. Quantification was
carried out using isobutyl acetate as internal standard. Volatile
compounds were analyzed in duplicate.

Peaks were identified by mass spectrometry using conditions
identical to those for gas chromatography. A Fisons MD800
mass selective detector coupled to a GC 8000 series (VG
Analytical, Manchester, U.K.) was employed. Masslab v1.3 (VG
Analytical, Manchester, U.K.) was the software used. Sample
components were verified by comparison of mass spectral data
with those of authentic reference compounds.

Gas chromatographic data were linked to a personal com-
puter. ASCII files were manipulated to eliminate unwanted

information from the chromatographic reports by a Fortran
program. The automated program performed the selection of
peaks based on retention time ranges after visual recognition
of a standard chromatogram. Retention time and areas of
selected peaks, including the internal standard, were stored
in a database (Ultrix/SQL, version 2.0). Ratios of each of the
selected peak areas to the area of the internal standard were
used for statistical analysis.

Sensory Properties of Volatile Compounds by Olfac-
tometry. To assess the aroma notes corresponding to olive
oil volatile compounds, an HRGC-sniffing technique was
applied to virgin olive oil samples (Morales et al., 1995). The
effluent of the GC column was split 1 to 10 to the detector
and the sniffing port, respectively. The odor-active regions of
the eluate were evaluated and their aroma notes assigned by
five assessors, two with >10 years of experience and three who
were habitual consumers of virgin olive oil. The odor descrip-
tions were noted on a form with a preprinted time scale;
assessors did not see the chromatogram. Assessors basically
agreed on the odors of volatile compounds, although different
semantic terms may have been used. A consensus-building
discussion was held with assessors to decide the final sensory
descriptors.

Sensory Analysis. The profile sheet of the International
Olive Oil Council (IOOC, 1996) is divided into two types of
sensory attributes, “positive” and “negative” (defects). The
latter clusters sensory attributes that indicate defectiveness
and even unpleasantness: fusty, mustiness, winey-vinegary-
acid, muddy sediment, metallic, rancid, and others, whereas
the former group clusters fruity, bitter, and pungent. The
evaluation of attributes is made on an unstructured scale
(IOOC, 1996). A mathematical program calculates the median
from the graphical information given by assessors in the profile
sheet.

An olive oil is then classified as extra virgin olive oil when
the median of defects is 0 and the median of fruity is >0. The
oil is classified as virgin when the median of defects is e2.5
but the median of fruity is >0. If the median of defects is >2.5
but <6.0 or if the median of defects is e2.5 but the median of
fruity is 0, then the sample is classified as ordinary virgin olive
oil. An olive oil is classified as lampant virgin olive oil when
the median of defects is >6.0.

The samples of the test set were evaluated in triplicate by
assessors following strictly the methodology suggested by the
International Olive Oil Council (IOOC, 1996). The sensory
analysis was carried out not only to detect the intensity of
rancid defect in the samples but also to compare the limit of
detection of this defect carried out by the assessors and
sensors. This experiment is of great importance since some
cherished sensory perceptions (e.g., fruity and green) can mask
the rancid defect when the samples are evaluated with a panel
test, whereas it is not expected when using sensors.

Sensors. An AromaScan A32S/8S Labstation System
(AromaScan plc, Crewe, U.K.) was used in this study. This
system comprises an analyzer (A32S) unit with a 32 element
sensor array of conducting polymers and a sample station
(A8S). The latter generates reference air of known quality and
humidity that is used to fill the flask containing the sample.
The equilibrated headspace is then pumped into the A32S
analyzer and passed across the sensor array. The sensors are
made of polymers that change their electrical resistance when
a volatile compound adsorbs. The change in electrical resist-
ance of each sensor element is measured, and all of the
responses are converted into a normalized pattern of re-
sponses. Each sensor has a different characteristic response.
The relative responses of individual sensors reflect the range
of volatile compounds given off by a sample.

An initial tentative analysis was carried out to determine
the optimum volume of the flask and the sample amount
because there was no reference in the bibliography. The initial
experiments were carried out with flasks of 10 mL with 1 and
3 mL of olive oil, but the response intensities of two sensors
rose over time, pointing out that it was necessary to increase
the amount of sample. After different experiments, the best
results were obtained with 5 mL of olive oil inside flasks of
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120 mL. The ratio of sample content to flask volume favors
the surface contact between the liquid and gas phases,
increasing the olive oil volatile compounds inside the head-
space. All of the samples were stabilized to room temperature
for 25 min inside hermetically closed flasks. The analyses were
carried out at 25 °C and 6% humidity.

The following protocol for the valve sequence was estab-
lished: reference 30 s, sample 120 s, wash 30 s, and reference
120 s. The reference consisted of 6% relative humidity air
passed directly from the A8S sample station to the analyzer
(A32S). The wash part of the cycle consists of passing over
the sensor air that had previously been passed over a 2%
water/butanol solution. The purpose of this part of the cycle
is to avoid cross-contamination between successive samples.
The effectiveness of the wash with butanol/water, for the
reduction of the cross-contamination of the sensors, is con-
trolled during the second reference step, when the response
of the sensors has to return to zero. The sample station
provides a wash (vapor) source through the wash line at the
rear of the instrument. The wash source is generated from the
headspace above the wash liquid (butanol/water 2%). The time
of washing was 30 s because it allowed the return to zero. This
protocol and the temperature and humidity controls guarantee
that all of the measurements were carried out under identical
conditions.

The information from the sensors was collected every 4 s
during the interval 35-150 s. The methodology used to choose
this interval was based on previous experiences (Rocha et al.,
1998) where the behavior of the sensors was excellent. All of
the samples were measured several times on different days.
The samples were randomly selected for the analyses.

Mathematical Analysis. Principal component analysis
(PCA) was applied to analyze the structure of data sets and
detect abnormal information (outliers). Cross-validation (Mar-
tens and Naes, 1989), with different cancellation matrices, was
used to detect the significant components for this study.

Stepwise linear discriminant analysis (SLDA) was applied
to find the levels of correct classification of the samples by the
information of sensors at different measurement times. The
strictest conditions were applied to avoid the possibility of the
results being obtained by chance. The criterion for variable
(sensor) selection was the F-to-enter value (>5.05) obtained
from the F distribution table (F ) 0.95), taking into account
the number of clusters (percentage of rancid standard in the
virgin olive oil) and the minimum number of samples inside
the clusters. An internal cross-validation was carried out with
∼30% of the samples. The selection of samples for this internal
test set was completely random.

Multidimensional scaling (MDS) was used to determine the
inherent differences (multidimensional scaling is a nonsuper-
vised procedure) among the samples spiked with the rancid
standard at different percentages. A tree clustering classifica-
tion algorithm, using a complete linkage amalgamation rule
and city-block (Manhattan) distance (Shiffman et al., 1981),
was applied to calculate the matrix of distances. The stress
measurement was used to evaluate how well the final config-
uration reproduces the observed matrix of distances. A confi-
dence ellipse was plotted for each natural group. The confi-
dence area of the ellipses is based on the assumption that the
two variables (roots) follow the bivariate normal distribution,
and their orientation is determined by the sign of the linear
correlation between two variables; the longer axis of the ellipse
is superimposed on the regression line. The probability that
the samples will fall within the area marked by the ellipse
was fixed to 0.95.

The goal of canonical correlation (CC) was to analyze the
relationship between two sets of variables (volatile compounds
and sensor responses) to see how the two sets relate to each
other. Selection of pairs of canonical variates was made by
Barlett’s test.

Regression on principal components (RPCA), which main-
tains the idea of the standard multiple regression procedure
but with orthogonal variables (the principal components), was
applied to correlate the sensor responses and the percentages
of rancid standard in virgin olive oil sample. Ridge regression

(RR) was applied to analyze the relationship between volatile
compounds and the response of sensors. This regression
procedure was applied because high values of correlation
between sensors were detected.

Statistica (Statistica, 1995) and BMDP (Dixon, 1983) were
used to implement the statistical procedures of PCA, SLDA,
MDS, CC, RPCA, and RR.

RESULTS AND DISCUSSION

Table 1 shows the most representative chemical
compounds identified in the rancid standard from a
large set of volatile compounds (Morales and Aparicio,
1997). The table also shows the mean of these com-
pounds in 87 extra virgin olive oils from different
countries and varieties (Morales et al., 1995; AIR, 1998)
and the content of these compounds in the rancid
standard. There are obviously clear differences between
the profile of virgin olive oils (VOO) and this standard.
However, the most remarkable is the number of volatile
compounds that are not detected in VOO but in the
standard, pointing out the possibility of detecting these
sensory attributes in VOO even at very low intensities.

Column 2 (“sniffing”, Table 1) shows the sensory
characterization of each volatile. This information con-
firms that the selection of volatile compounds has a
sensory explanation for the rancid defect. The sensory
characterization of each volatile by sniffing is of great
interest because the correlation between sensors and
volatiles can allow characterization of the former ones
in terms of sensory quality. This characterization can
also be useful to check whether the array of selected
sensors procures a sensory profile similar to that given
by assessors. Anyway, the volatile with which a sensor
is correlated should agree with the sensor sensitivity
to the volatile.

In general, there are two main concepts used in the
measurement of off-odors: detectability and intensity.
To study these criteria, the samples of the training set,
constituted by the addition of rancid standard to a
Portuguese VOO at different percentages (0, 1, 5, 12,
20, 40, 60, and 100%), were evaluated by a sensor array
of 32 sensors. The sensor array has sensors sensitive to
alcohols of short and long chains, carboxylic acids,
aromatics, chlorinated hydrocarbons, esters of short and

Table 1. Volatile Compounds Mainly Responsible for
Rancid Defect Characterized by Sniffing (Olfactometry)a

content (ppm)

volatile sniffing standard VOO

pentanal woody, pungent 13.04 0.015
hexanal powerful green, fatty 132.25 0.365
heptanal fatty, woody 7.12 0.027
2-heptenal soapy, tallowy 9.98 0.025
nonanal waxy, painty 27.82 tr
acetic acid pungent, sour 8.67 0.026
2,4 heptadienal fatty, rancid 1.82 0.085
decanal soapy 1.50 0.005
2-decenal tallowy, soapy 4.61 tr
nonanol fatty 1.52 tr
2,4-nonadienal soapy, penetrating 0.75 tr
butanoic acid rancid 7.30 tr
undecanal pungent 2.59 0.006
2,4-decadienal fatty 1.56 tr
hexanoic acid rancid, pungent 25.33 0.007
heptanoic acid rancid 0.87 0.004

a The contents of volatile compounds, in the rancid standard
and the mean of 87 European VOOs, are referred to the virgin
olive oil headspace under the conditions described under Materials
and Methods.
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long chains, ketones plus water, and amines. The
importance of including sensing materials with diverse
properties is of great importance as the sensor array
will best spread out a diverse set of vapors and hence
facilitate discrimination. However, it is important to
examine the data generated by an array of odor sensors
so that it can be possible, for example, to identify sensors
which clearly generate small and noisy signals, to detect
sensors that exhibit a high degree of linearity with other
sensors, to identify spurious responses, etc. To study
these and other aspects, the analysis of data was carried
out using the following protocol: (i) detection of outliers
(samples); (ii) study of repeatability of the analyses; (iii)
selection of the measurement interval; (iv) selection of
the best sensors for rancid defect; (v) evaluation of the
discriminative capacity of sensors; and (vi) evaluation
of a possible calibration. Finally, the calibration equa-
tion was applied to a test set of samples spiked at
percentages even lower than used in the training set.

PCA was used to detect abnormal data (outliers)
(Tabachnick and Fidell, 1983) in the studies described
below. Five outliers were detected and removed from
the data set. Two of them were detected when replicates
of the rancid standard were analyzed, whereas the
others were detected by evaluating replicates of the
samples spiked with the official standard at 60 and 40%.

Each of the samples was analyzed various times at
different hours and days to study the repeatability of
the analyses and detect the influence of ambient condi-
tions (humidity and temperature) on the measurements.
The coefficient of variation oscillated between 2.5% for
the Portuguese VOO and 12.7% for the rancid standard.
Figure 1 shows the chromatograms of the Portuguese
VOO and the rancid standard (oxidized oil). There is a
great difference between their profiles, acids and alde-
hydes being remarkably higher in the oxidized sample.

An analysis of the response of the sensors to iterative
analysis of the same sample showed that the highest
coefficients of variation (CV) corresponded to the first
results of the experiment and slightly to the last ones.
The CVs of the samples, analyzed one by one, oscillated
between 2 and 9%, the highest value corresponding to
the rancid standard. These figures indicate that some
sensors could have been close to saturation due to the
great amount of chemical compounds in the rancid
standard.

It is well-known that the sensors need a certain period
of time to give a response to the excitation produced by
the volatile compounds (Rocha et al., 1998). An SLDA
was used to detect the best interval of time differentiat-
ing the samples spiked with the standards. SLDA was
applied with F-to-enter selected from an F table at
0.95%, taking into account the number of samples and
variables (sensors). The response of sensors in the
interval 34-64 s was too poor up to the point that the
discrimination was impossible. This interval was re-
moved, and the following studies were based on the
interval 69-120 s.

Once the interval of time was selected, the mean of
the raw intensities of each sensor during the interval
was calculated. Figure 2 shows the mean of the raw
responses of the sensors to the rancid defect during the
selected interval. The figure shows that there were
sensors with the ability to distinguish VOO from the
spiked samples and to classify the samples at the
addition percentages (0, 1, 5, 12, 20, 40, 60, and 100%).
These sensors were numbered 1, 5, 11, 12, 13, 27, 30,
31, and 32. These sensors, however, showed a behavior
contrary to that expected. Their responses were lower
for the rancid standard and spiked samples than for
VOO, despite the amount of volatile compounds being
lower in VOOs (Morales and Aparicio, 1997). It could
be suggested that this is distinctive of a difference of
humidity between the fresh sample and the rancid
standard. A very small difference, e.g., 700 versus 900
ppm, may lead to an equivalent response of hundreds
of parts per million of volatile due to the higher
sensitivity of conducting polymers to water. However,
this behavior can also be explained by the increase of
their resistance, due to polymer swelling, when adsorb-
ing the volatile compounds. The last hypothesis seems
to be more plausible as the analyses were carried out
at 25 °C and 6% humidity on different days, and at
various times, with a good repeatability.

An RR analysis of the sensors with each of the volatile
compounds (Table 1) showed that the regression coef-
ficient oscillated between R ) 0.72 and R ) 0.79 (p <
0.05). The volatile compounds correlated with the sen-
sors were the alcohol nonanol (5, 10, 12, 13, 27, 30, 31),
acetic (1, 19), heptanoic (21), and butanoic (11, 32) acids,
and the aldehyde pentanal (10). All of the selected
sensors were correlated with those volatile compounds
to which they were sensitive, with the exception of
sensor 10, which was correlated with a C5 aldehyde. On
the other hand, the profile of volatiles is responsible for
the rancid perception, and hence the correlation (CC)
between the data sets of volatiles and sensors would
indicate how useful the sensors are in emulating the
whole profile of volatiles. Thus, when CC was applied
to both sets of data (volatiles and sensors), the regres-
sion coefficient was low enough (R ) 0.73). This coef-
ficient would have been higher whether had there been
sensors sensitive to aldehydes of short chain (C6-C9),

Figure 1. Chromatograms of VOO (A) and the rancid
standard (B). The amount of sample of rancid standard was
half that of VOO. Peaks: 0, internal standard; 1, hexanal; 2,
(E)-2-hexenal; 3, hexyl acetate; 4, penten-2-ol; 5, hexan-1-ol;
6, (Z)-3-hexen-1-ol; 7, pentanal; 8, heptanal; 9, 1,3-nonadiene;
10, octanal; 11, 2-heptenal; 12, nonanal; 13, acetic acid; 14,
2,4-heptadienal; 15, decanal; 16, propanoic acid; 17, undecanal;
18, butanoic acid; 19, 2,4-nonadienal; 20, 2-decenal; 21,
nonanol; 22, pentanoic acid; 23, 2,4-decadienal; 24, hexanoic
acid; 25, heptanoic acid; 26, octanoic acid.

856 J. Agric. Food Chem., Vol. 48, No. 3, 2000 Aparicio et al.



which are the major compounds in oxidized oils (Frankel,
1985). Morales and Aparicio (1997) have stated that the
quantification of hexanal and nonanal is enough for
detecting oxidized VOO even before a panel test could
quantify the attribute rancid.

The sensory characterization (sniffing) of the volatile
compounds correlated with the selected sensors can
allow hypothesizing about the sensory profiles of samples
from the point of view of volatiles and, hence, of their
correlated sensors. However, the content of the com-
pounds in the samples varies according to the percent-
age of rancid standard added to VOO and, on the other
hand, volatile compounds have different levels of detec-
tion (odor thresholds) for assessors. If the content of a
chemical compound is lower than the odor threshold,
then this compound will not individually contribute to
the flavor, as assessors would not detect it. However, it
can also be argued that it can contribute to the flavor
due to possible phenomena of synergy/enhancement
with other compounds. Table 2 shows the odor thresh-
olds (parts per million) of the selected chemical com-
pounds calculated in paraffin oil. Thus, the ratio be-
tween the content of the volatile compounds in the

rancid standard and their odor threshold indicates that
assessors would not detect heptanal in admixtures lower
than 45% (threshold ) 3.21 ppm; content at 45% is 3.20
ppm) or nonanol in admixtures lower than 18% (thresh-
old ) 0.28 ppm; content at 18% is 0.27 ppm), respec-
tively. Heptanoic, acetic, and hexanoic acids would be

Figure 2. Mean of the raw response of the sensors (time between 69 and 120 s) to a VOO and samples spiked with different
percentages of the rancid standard.

Figure 3. Results of applying MDS. The ellipses of confidence were plotted at a probability of 0.95.

Table 2. Threshold Values of Volatile Compounds
Responsible for Off-Flavor Components

volatile
odor

threshold volatile
odor

threshold

pentanal 0.24a 2-decenal
hexanal 0.32a nonanol 0.28d

heptanal 3.21b 2,4-nonadienal
2-heptenal butanoic acid 0.14c

nonanal 13.5a undecanal
acetic acid 0.50d 2,4-decadienal 2.15a

2,4 heptadienal 3.62a hexanoic acid 0.70d

decanal 6.72a heptanoic acid 0.10d

a Odor threshold values (mg/kg) in paraffin oil obtained from
Meijboom (1964). b Odor threshold values (mg/kg) in paraffin oil
obtained from Kochhar (1993). c Odor threshold values (mg/kg) in
sunflower oil obtained from Grosch (1994). d Odor threshold values
(mg/kg) in refined VOO.
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detected in admixtures above 12, 6, and 3%, respec-
tively, whereas the aldehydes 2,4-heptadienal and 2,4-
decadienal would not contribute to the rancid sensory
perception. From an analysis of the other volatile
compounds, pentanal and butanoic acid would contrib-
ute to the detection of rancid perception in admixtures
above 2%. The case of hexanal is peculiar because it is
present in the initial VOO as it is produced from linoleic
acid through the lipoxygenase pathway. The authors
(Aparicio et al., 1996) have demonstrated that hexanal
is an important flavor compound of VOO, and it has
been positively correlated with the overall acceptability
of potential and habitual consumers of VOO for values
in the range of 0.03-1.06 ppm.

A panel test (IOOC, 1996) evaluated samples of
Portuguese VOO spiked with the rancid standard at
different percentages (0, 1, 5, 10, 12, 20, 40, 60, and
100%). The assessors decidedly detected the rancid
defect when the addition was g10% and classified the
sample as lampant-VOO. The addition of the rancid
standard at 5% was very slightly detected as the strong
green-fruity perception masked the defect, and hence

the assessors classified the samples as ordinary virgin
olive oil. The assessors had more problems detecting the
presence of the rancid defect at 1%, and the sample was
classified in the neighbors of VOO.

The next step was to analyze up to which point the
selected sensors were able to discriminate among the
samples. The results of Figure 2 promised good results,
and in fact Figure 3 shows that the unsupervised
statistical procedure of MDS (Shiffman et al., 1981) was
able to distinguish one by one the samples spiked with
the official standard. The ellipses of confidence, plotted
for each group inside the figure, show that there is no
overlapping between the groups. An analysis of the
variance explained by each root (90.2 versus 6.6%)
shows that the groups are explained mostly by the first
root, and their position in relation to it goes from zero
addition of the rancid standard to 100%. This means
that there is a certain possibility of calibration of the
array of sensors with respect to the rancid perception.
Regression on principal components was the statistical
procedure used for a tentative calibration of the rancid
perception.

Figure 4. Result of the RPCA. The signs of each group represent the measurements carried out with each sample (0, 1, 5, 12,
20, 40, 60, and 100% of the rancid official standard) on different days. The abnormal data were previously removed.

Figure 5. Calculated rancid defect (percent) in the test set of samples determined by applying the nonlinear regression equation
of the training set: (a) projection of the test set results on the regression of the training set; (b) magnified results of the test set.
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Figure 4 shows that the results are fine, although
there is a certain nonlinearity in the sensor response,
suggesting that a quadratic fitting could be better
(Gardner and Hines, 1997). In fact, the use of a linear
regression on nonlinear sensors is adequate if we accept
that a relevant part of the nonlinear response space (0-
12 and 60-100%) may be approximated by a linear
region. Anyway, when covering the whole region of the
response space, the sensors have a nonlinear concentra-
tion response, and so a nonlinear technique is required.
A nonlinear regression based on an exponential growth
equation [y ) c + exp(b0 + b1x1 + b2x2 + ...)] with a
quasi-Newton estimation method and a convergence
criterion of 0.01 was applied to the selected sensors (1,
5, 11, 12, 13, 27, 30, 31, 32). The equation explained
0.97 of the variance, whereas the regression coefficient
was 0.986.

Between the two sources of nonlinearity described
above (0-12 and 60-100% of rancid perception), the
detection of rancidity in samples with very low rancid
perception is of greater interest. A sample with a high
level of rancidity is not fit for consumption as it is, and
the sample must be refined. However, a sample with a
low level of rancidity can lead to its classification as
(extra) virgin olive oil, instead of ordinary virgin olive
oil (EC, 1991), with the consequent profit. The test set
was used to analyze this region. Figure 5 shows that
the samples were classified between 0.6 and 6%, in
terms of the rancid standard (100%), using the nonlin-
ear regression based on the responses of sensors (1, 5,
11, 12, 13, 27, 30, 31, 32) to the training set. These
results basically agree with the classification of samples
by the hexanal/nonanal ratio (Morales et al., 1997),
whereas the peroxide value does not show substantial
differences between samples (Table 3). Assessors also
evaluated the samples, but they were unable to order
them correctly, although the rancid perception was
detected at percentages >3%. Assessors rejected the
admixtures >3% for consuming and had certain doubts
about the samples between 0.6 and 3% that were
characterized basically as “painty, pungent (penetrat-
ing), woody”. If we suppose that the selected sensors had
been assessors, then the sensory profile of the samples
had been characterized as “fatty” for admixtures <2%,
“fatty, woody, pungent, rancid” for admixtures between
2 and 12%, and “sour, waxy, and painty” for admixtures
>50%. The fine results of the array of conducting
polymer sensors can be due to the fact that they detect

the concentration of volatile compounds, and hence they
do not have the limitation of their odor threshold that
assessors have.
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